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Abstract
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With

only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately

the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point

are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed

by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion

mass allows for a bound H-dibaryon or a near-threshold scattering state. Further Lattice QCD

calculations are required to refine this situation.
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hard!



proton

quark

anti-quark

Quantum Chromodynamics

pion

gluon

QCD = rules for making hadrons from quarks and gluons

(π)



proton

Complicated strong coupling problem!

gluon mass = 0

up quark mass ∼ 3 MeV

down quark mass ∼ 5 MeV

proton mass ∼ 940 MeV

Mass Budget



proton

Complicated strong coupling problem!

gluon mass = 0

up quark mass ∼ 3 MeV

down quark mass ∼ 5 MeV

proton mass ∼ 940 MeV

Mass Budget

~ 4% is QCD interactions!
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neutron

Nuclear Physics: two layers of complexity!!

QCD

quarks

gluons

anti-quarks
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Why do it?



Dependence on fundamental parameters of nature:

Nuclear physics with quantifiable uncertainties!

αs αe mu md ms

Hypernuclear physics



}

L

b
} MπL � 1

b � M−1
N

volume:

lattice spacing:

Lattice QCD = QCD on a grid or lattice

Can use Effective Field Theory to extrapolate in L and b!
(systematic uncertainties fully controlled)
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   Signal/noise and statistics
Excited level resolution

 Number of contractions
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NOISE

∼ e−2Mπt

signal/noise ∼ 1
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FIG. 17: The pion EMP’s determined on the four lattice ensembles used in this work. Note that
the y-axis scale is the same in all four panels.

A. The Pion Mass

The finite-volume contribution to the mass of the pion in SU(2)L ⊗ SU(2)R χPT is given
by [11]

mπ(L)−mπ(∞) =
3m3

π

4π2f 2
π

1

mπL

�
K1(mπL) +

√
2K1(

√
2mπL) +

4

3
√
3
K1(

√
3mπL) + . . .

�
(28)

whereK1(x) is the modified Bessel function. The meson masses have different overall volume
scaling to the baryons, due to the absence of a three-meson vertex. As K1(z) → e−z/

√
z, the

results of the Lattice QCD calculations are shown in fig. 19 as a function of e−mπL/(mπL)3/2

rather than e−mπL/(mπL) as was used for the baryons. Consequently, the naive fit that we
perform to the meson masses is of the form

m(V )
M (mπL) = m(∞)

M + c(V )
M

e−mπ L

(mπL)3/2
. (29)

With the current precision of the Lattice QCD calculation, we cannot distinguish be-
tween the fit forms of e−mπL/(mπL) and e−mπL/(mπL)3/2 with statistical significance.

The fit parameters are m(∞)
π = 0.069073(63)(62) t.l.u. = 387.8(0.4)(0.4)(2.5) MeV and

c(V )
π = 0.23(12)(07) t.l.u. = (1.30(65)(39)(01))× 103 MeV.
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NOISE

∼ e−3Mπt

signal/noise ∼ e−(MN− 3
2Mπ)t



signal/noise problem  =  quark identity crisis!

Am I in a baryon or in a pion??
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FIG. 1: The nucleon EMP’s obtained in the four lattice volumes. Note that the temporal extent
of the 323 × 256 ensemble is twice that of the other three ensembles.

TABLE I: Results from the Lattice QCD calculations in the four lattice volumes.

L3 × T 163 × 128 203 × 128 243 × 128 323 × 256

L (fm) ∼ 2.0 ∼2.5 ∼3.0 ∼3.9

mπL 3.888(20)(01) 4.8552(84)(35) 5.799(16)(04) 7.7347(74)(91)

e−mπL ∼0.0205 ∼0.0078 ∼0.0030 ∼0.00044
1

mπL
e−mπL ∼5.3× 10−3 ∼1.6× 10−3 ∼5.2× 10−4 ∼5.7× 10−5

1
(mπL)3/2

e−mπL ∼2.7× 10−3 ∼7.4× 10−4 ∼2.2× 10−4 ∼2.1× 10−5

mπT 8.89(16)(01) 8.878(54)(22) 8.836(85)(02) 17.679(59)(73)

e−mπT ∼1.38× 10−4 ∼1.39× 10−4 ∼1.45× 10−4 ∼2.10× 10−8

MN (t.l.u.) 0.21004(44)(85) 0.20682(34)(45) 0.20463(27)(36) 0.20457(25)(38)

MΛ (t.l.u.) 0.22446(45)(78) 0.22246(27)(38) 0.22074(20)(42) 0.22054(23)(31)

MΣ (t.l.u.) 0.22861(38)(67) 0.22752(32)(43) 0.22791(24)(31) 0.22726(24)(43)

MΞ (t.l.u.) 0.24192(38)(63) 0.24101(27)(38) 0.23975(20)(32) 0.23974(17)(31)

calculations given in table I. As shown previously, the volume dependence of the mass of a

given baryon can be calculated order-by-order in HBχPT. The formally-leading contribution

to the volume dependence of the mass of an octet baryon results from a one-loop diagram
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2
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q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,
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where the S-function is given by
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thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.
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Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
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more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
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baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.
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Abstract
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With

only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately

the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point

are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed

by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion

mass allows for a bound H-dibaryon or a near-threshold scattering state. Further Lattice QCD

calculations are required to refine this situation.
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Total Production Numbers : um0p0840_sm0p0743

m~390 MeV , b~0.123 fm

Ensemble Number of cfgs
Average Number 

of Sources per cfg

Total Number of 

Sources 

(x105)

163 X 128 2001 224 4.5

203 X 128 1195 364 4.3

243 X 128 2215 180 3.9

323 X 256 774 174 1.3

High statistics!



The simplest nucleus:

deuteron

I. INTRODUCTION

A major objective for nuclear physicists is to establish the technology with which to reliably
calculate the properties and interactions of nuclei and to be able to quantify the uncertain-
ties in such calculations. Achieving this objective will have broad impact, from establishing
the behavior of matter under extreme conditions such as those that arise in the interior of
neutron stars, to refining predictions for the array of isotopes produced in nuclear reactors,
and even to answering anthropic questions about the nature of our universe. While nuclear
phenomenology generally describes experimentally measured quantities, its ability to make
high precision and accurate predictions for quantities that cannot be accessed experimen-
tally is limited. This situation is on the verge of dramatically improving. The underlying
theory of the strong interactions is known to be quantum chromodynamics (QCD), and
the computational resources now available are beginning to allow for ab initio calculations
of basic quantities in nuclear physics. With further increases in computational power and
advances in algorithms, this trend will continue and our understanding of, and our ability
to calculate, light and exotic nuclei will be placed on a solid foundation.

In nature, two nucleons in the 3S1 −3D1 coupled channels bind to form the simplest
nucleus, the deuteron (Jπ = 1+), with a binding energy of Bd = 2.224644(34) MeV, and
nearly bind into a di-neutron in the 1S0 channel. However, little is known experimentally
about possible bound states in more exotic channels, for instance those containing strange
quarks. The most famous exotic channel that has been postulated to support a bound state
(the H-dibaryon [1]) has the quantum numbers of ΛΛ (total angular momentum Jπ = 0+,
isospin I = 0 and strangeness s = −2). In this channel, all six quarks in naive quark models,
like the MIT bag model, can be in the lowest-energy single-particle state. Additionally, more
extensive analyses using one-boson-exchange (OBE) models [2] and low-energy effective field
theories (EFT) [3, 4], both constrained by experimentally measured nucleon-nucleon (NN)
and hyperon-nucleon (YN) cross-sections and the approximate SU(3) flavor symmetry of
the strong interactions, suggest that other exotic channels also support bound states. In the
limit of SU(3) flavor symmetry, the 1S0-channels are in symmetric irreducible representations
of 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1, and hence the Ξ−Ξ−, Σ−Σ−, and nn (along with
nΣ− and Σ−Ξ−) all transform in the 27. YN and NN scattering data along with the leading
SU(3) breaking effects, arising from the light-meson and baryon masses, suggest that Ξ−Ξ−

and Σ−Σ− are bound at the physical values of the light-quark masses [2, 3, 4].
Recently, the first steps have been taken towards calculating the binding energies of light

nuclei directly from QCD. Early exploratory quenched calculations of the NN scattering
lengths [5, 6] performed more than a decade ago have been superseded by nf = 2 + 1
calculations within the last few years [7, 8] (and added to by further quenched calculations [9,
10] 1). Further, the first quenched calculations of the deuteron [12], 3He and 4He [13]
have been performed, along with nf = 2 + 1 calculations of 3He [14] and multi-baryon
systems containing strange quarks [14]. Efforts to explore nuclei and nuclear matter using
the strong coupling limit of QCD have led to some interesting observations [15]. Recently,
nf = 2 + 1 calculations by us (NPLQCD) [16], and subsequent nf = 3 calculations by the
HALQCD collaboration [17], have provided evidence that the H-dibaryon (with the quantum

1
The HALQCD collaboration has produced non-local, energy-dependent, and sink-operator dependent

quantities from lattice spatial correlation functions that contain the same, but no more, information than

the NN energy eigenvalues in the lattice volume(s), e.g. Ref. [11].
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tions in somewhat larger volumes, or of moving systems [28], would significantly reduce the

uncertainty introduced by the volume extrapolation.
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FIG. 5: The deuteron binding energy as a function of the pion mass. The black circle denotes
the experimental value. The blue point and uncertainty results from the quenched calculations of
Ref. [12], while the red point and uncertainty (the inner is statistical and the outer is statistical
and systematic combined in quadrature) is our present nf = 2 + 1 result.

Our nf = 2 + 1 result and the recent quenched (nf = 0) result of Ref. [12] are shown

in fig. 5, along with the physical deuteron binding energy. Clearly, the large uncertainty

of our present result does not provide much constraint on the dependence of the deuteron

binding energy as a function of the light-quark masses, other than to demonstrate that the

deuteron is likely bound at mπ ∼ 390 MeV, qualitatively consistent with the quenched result

at mπ ∼ 800 MeV [12].

A number of groups have attempted to determine how the deuteron binding energy

(and the binding of other nuclei) varies as a function of the light-quark masses using

EFT [45, 46, 47, 48] and hadronic models [49]. Such a variation impacts the constraints

that can be placed on possible time-variations of the fundamental constants of nature from

the abundance of elements produced in Big Bang Nucleosynthesis (BBN) (see Refs. [50, 51]

for recent constraints from BBN). With the exception of the analysis of Ref. [48], both of

the EFT analyses, which use naive dimensional analysis (NDA) to constrain the quark-mass

dependent dimension-six operators that contribute at next-to-leading order (NLO) in the

chiral expansion, and the hadronic models of Ref. [49], suggest that the deuteron becomes

less bound as the quarks become heavier near their physical values. The present LQCD

calculation at a pion mass of mπ ∼ 390 MeV is somewhat beyond the range of applicability

of the EFT analyses and so cannot be directly translated into constraints on the coefficients

of local operators with confidence. Further, the uncertainty in our calculation is too large to

be useful in a quantitative way. Nevertheless, our result conflicts with the trend suggested

in most of the EFT and model analyses, and further studies are necessary to resolve this

issue.
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Figure 23: The quenched results for the binding energies (in lattice units) obtained by the
PACS-CS collaboration in the triton channel and the channel with the quantum numbers of
the α-particle [120]. The pion mass in these calculations is mπ ∼ 800 MeV.

where Nα(x, t) is an interpolating field (composed of three quark operators) that has non-vanishing
overlap with the nucleon, Γ+ is a positive energy projector, and the angle brackets indicate statistical
averaging over calculations on an ensemble of configurations. The variance of this correlation function
is given by

N σ2 ∼ �θ†N(t)θN(t)� − �θN(t)�2

=
�

x,y

Γδα
+ Γγβ†

+ �0| Nα(x, t)N
β
(y, t)Nγ(0, 0)N

δ
(0, 0) |0� − �θN(t)�2

→ ZNNe
−2MN t − Z2

Ne
−2MN t + Z3π e−3mπt + ...

t→∞→ Z3π e−3mπt , (66)

where all interaction energies have been neglected, and N is the number of (independent) calculations.
At large times, the noise-to-signal ratio has the form, as argued by Lepage [125],

σ

x
=

σ(t)

�θ(t)� ∼ 1√
N

e(MN− 3
2mπ)t . (67)

More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
eA(MN− 3

2mπ)t (68)

at large times.
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Figure 23: The quenched results for the binding energies (in lattice units) obtained by the
PACS-CS collaboration in the triton channel and the channel with the quantum numbers of
the α-particle [120]. The pion mass in these calculations is mπ ∼ 800 MeV.

where Nα(x, t) is an interpolating field (composed of three quark operators) that has non-vanishing
overlap with the nucleon, Γ+ is a positive energy projector, and the angle brackets indicate statistical
averaging over calculations on an ensemble of configurations. The variance of this correlation function
is given by

N σ2 ∼ �θ†N(t)θN(t)� − �θN(t)�2

=
�

x,y

Γδα
+ Γγβ†

+ �0| Nα(x, t)N
β
(y, t)Nγ(0, 0)N

δ
(0, 0) |0� − �θN(t)�2

→ ZNNe
−2MN t − Z2

Ne
−2MN t + Z3π e−3mπt + ...

t→∞→ Z3π e−3mπt , (66)

where all interaction energies have been neglected, and N is the number of (independent) calculations.
At large times, the noise-to-signal ratio has the form, as argued by Lepage [125],

σ

x
=

σ(t)

�θ(t)� ∼ 1√
N

e(MN− 3
2mπ)t . (67)

More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
eA(MN− 3

2mπ)t (68)

at large times.
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that do not involve annihilation diagrams have been studied by NPLQCD [46] in the MA
program, leading to predictions for the πΣ and πΞ scattering lengths. (For a discussion
of the meson-baryon scattering processes involving kaons, see section F3.) As with the
meson-meson systems, ACW data now exists for a mapping out of the meson-baryon phase
shifts.

E. Nuclear Physics

1. Nucleon-Nucleon and Hyperon-Nucleon Interactions

In the S-wave of nucleon-nucleon (NN) scattering, only two combinations of spin and isospin
are possible, a spin-triplet isosinglet (3S1) and a spin-singlet isotriplet (1S0). At the physical
pion mass, the scattering lengths in these channels are unnaturally large and the 3S1-3D1

coupled-channel contains a shallow bound state, the deuteron, with a binding energy of
∼ 2.2 MeV. These large scattering lengths and the shallow bound state are described
in EFT at very-low energies by the coefficient of the momentum-independent four-nucleon
operator which has a non-trivial fixed-point in its renormalization group flow.

The first study of baryon-baryon scattering with Lattice QCD was performed more than
a decade ago by Fukugita et al [47, 48]. This calculation was quenched and at relatively
large pion masses, mπ

>∼ 550 MeV. The first full-QCD lattice calculation of NN scattering
parameters was performed by the NPLQCD collaboration [49] in the MA program, and the
nucleon-nucleon scattering lengths were found to be of natural size. (More recent work in
the ACW program finds consistent values [66].) Figure 5 (left panel) plots a compilation of
world data for the 3S1 NN scattering length.
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Figure 5: Left panel: compilation of world data for the NN scattering lengths in the 3S1

channel. The vertical lines correspond to the physical pion mass. Right panel: preliminary
effective mass plot of the interaction energy of the Σ-neutron system in the 3S1 channel.

Presently, a primary thrust of the NPLQCD collaboration is to calculate baryon-baryon
and other multi-baryon interactions in order to determine —from first principles— which
systems are bound in nature, and to give values of scattering parameters with controlled
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Is there  an H-dibaryon?

2

We start with the NBS wave function [10] defined by

φn("r) = 〈0|(BB)(α)("r, 0)|Wn;α〉, (1)

where the state vector |Wn;α〉 is a QCD eigenstate with
energy Wn and the baryon number 2 in the flavor α-plet.

(BB)(α)("r, t) =
∑

i,j,"x C
(α)
ij Bi("x + "r, t)Bj("x, t) is a two-

baryon operator with a relative distance "r in α-plet with
Bi being a one-baryon composite field operator in the
flavor octet. The relation between two-baryon operators
in the flavor basis and baryon basis are given by the SU(3)
Clebsch-Gordan coefficients.
In the lattice QCD simulations, the above NBS wave

functions is extracted from the four point function as

G4("r, t− t0) = 〈0|(BB)(α)("r, t) (BB)
(α)

(t0)|0〉 (2)

=
∑

Anφn("r)e
−Wn(t−t0), An = 〈Wn;α|(BB)

(α)
|0〉.

Here (BB)
(α)

(t0) is a wall source operator at time t0 to
create two-baryon states in α-plet, while (BB)(α)("r, t)
is the sink operator at time t to annihilate the two-
baryon states. Even if we choose t − t0 moderately
large so that the inelastic scatterings (e.g. the scatter-
ing with excited baryons and the scattering with me-
son production) do not contribute to G4, there still re-
main elastic scattering states with low energy excitations
due to the relative motion of the baryons. For exam-
ple, with the baryon mass M $ 2 GeV in a finite box
of L = 4 fm, the non-interacting two-baryon system
has W1 − W0 $ (2π/L)2/(2µ) $ 50 MeV, with the re-
duced mass µ = M/2. This requires t − t0 > 10 fm to
achieve 1/10 suppression of the first excited state φ1("r)
in G4("r, t − t0). It is beyond most of the previous and
current lattice simulations.
Our potential approach avoids the above problem

in the following way: The two-body potential in low
energy QCD dictates all the elastic scattering states
φn("r, t) = φn("r)e−(Wn−2M)t simultaneously through the
Schrödinger equation in the Euclidean space-time [10].
With the non-relativistic approximation for Wn, it reads

H0φn("r, t) +

∫

d3r′U("r,"r′)φn("r
′, t) = −

∂

∂t
φn("r, t), (3)

where H0 = −∇2/(2µ) and U is a non-local and energy-
independent potential. Since the above equation is lin-
ear in φn, the linear combination such as φ("r, t) ≡
∑

n Anφn("r, t) = G4("r, t)/e−2Mt also satisfies Eq.(3).
We note that the derivative expansion of U in terms of
its non-locality leads to U("r,"r′) = [VC(r) + VT (r)S12 +
VLS(r)"L · "S+ · · · )δ("r−"r′) [10], where VC , VT and VLS are
the central, tensor and spin-orbit potentials, respectively,
and dots stands for terms including power of ∇. It was
shown in [13] that the leading order potentials without
∇ dominate the potential at low energies. Thus, the rel-
evant term in the spin-singlet channel, VC , is obtained

TABLE I: Summary of lattice parameters and hadron masses.
The uncertainty of a [18] is not reflected in hadron masses.

a [fm] L [fm] κuds mps [MeV] mB [MeV] Ncfg
0.13710 1015.0(6) 2030(2) 360

0.121(2) 3.87 0.13760 836.5(5) 1748(1) 480

0.13800 672.9(7) 1485(2) 240

as

VC(r) =
(−H0 − ∂

∂t
)φ("r, t)

φ("r, t)
. (4)

In this way, one can extract the baryon-baryon potential
without identifying each elastic states φn("r, t) as long
as t − t0 is so chosen that the inelastic scatterings are
suppressed. Once we obtain the volume independent VC ,
binding energies and scattering phase shifts in the infinite
volume are obtained by solving the Schrödinger equation.
In contrast to the conventional Lüscher’s method [14], we
do not calculate the energy shift of two hadrons at finite
L to access the observables at L → ∞. Further theo-
retical details of this method will be given in a separate
publication [15].
Let us now consider the interaction between flavor-

octet baryons in the flavor SU(3) limit, for which two
baryon states with a given angular momentum are la-
beled by the irreducible flavor multiplets as 8 ⊗ 8 =
(27 ⊕ 8s ⊕ 1)symmetric ⊕ (10∗ ⊕ 10 ⊕ 8a)anti−symmetric.
Here “symmetric” and “anti-symmetric” stand for the
symmetry under the flavor exchange of two baryons.
For the system in the orbital S-wave, the Pauli prin-
ciple between two baryons imposes 27, 8s and 1 to
be spin singlet (1S0) while 10

∗, 10 and 8a to be spin
triplet (3S1). Since different multiplets are independent
in the flavor SU(3) limit, one can define the correspond-
ing potentials as V (27)(r), V (8s)(r), V (1)(r) for 1S0 and
V (10∗)(r), V (10)(r), V (8a)(r) for 3S1. Hereafter, we fo-
cus on the flavor-singlet channel with

BB(1) = −

√

1

8
ΛΛ+

√

3

8
ΣΣ+

√

4

8
NΞ, (5)

where Λ, Σ, N and Ξ are the standard baryon operators
with Lorentz structure, [q(Cγ5)q]q [7].
In our dynamical lattice QCD simulations, we employ

the renormalization group improved Iwasaki gauge action
and the non-perturbatively O(a) improved Wilson quark
action. For 163 × 32 lattice, we use the configuration set
generated by CP-PACS and JLQCD Collaborations [16]
at β = 1.83. In addition, we generate gauge configura-
tions with the same β for 243 × 32 and 323 × 32 lattices,
using the DDHMC/PHMC code [17]. Quark propaga-
tors are calculated for the spatial wall source at t0 with
the Dirichlet boundary condition in the temporal direc-
tion. The sink operator is projected to the A+

1 represen-
tation of the cubic group, so that the NBS wave function

(8⊗ 8)S =

In SU(3) limit:

With SU(3) breaking:

ΛΛ− ΣΣ−NΞ coupled channels!

Need isolated G.S.!
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occurring between analytic and non-analytic contributions. Without any better guidance as

to the form of the chiral extrapolation, we will consider the results from these two forms of

extrapolation with relatively heavy pions to provide nothing more than an estimate of the

H-dibaryon binding energy at the physical light-quark masses. Extrapolations with more
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FIG. 1: The results of lattice QCD from the NPLQCD collaboration [16] and this work (nf =

2 + 1) (red squares), and the HALQCD collaboration [17] (nf = 3) (blue triangles). The filled

symbols are used in the extrapolations, while the open squares (NPLQCD’s 230-MeV data) are

not. Left panel: The darker (lighter) shaded region corresponds to an extrapolation of the LQCD

calculations that is quadratic in the pion mass, of the form BH(mπ) = B0 + d1 m2
π where

the parameters are determined by the central values and statistical uncertainties (statistical and

systematic uncertainties combined in quadrature). The vertical dashed (green) line corresponds to

the physical pion mass. Right panel: Same as the left panel but with the extrapolation BH(mπ) =

B̃0 + c1 mπ.

complicated behaviors are allowed but cannot be constrained by the current lattice QCD

calculations, and are not discussed further. The chiral extrapolation of the H-dibaryon

binding energy using the form BH(mπ) = B0 + d1 m2
π results in the shaded region shown in

Fig. 1 (left panel). The H-dibaryon binding energy at the physical value of the pion mass,

neglecting isospin-violation and electromagnetic interactions, is found to be

Bquadratic
H

= 7.4± 2.1± 5.8 MeV , (1)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (left

panel). The first uncertainty results from an extrapolation using the statistical uncertainties

of both lattice QCD calculations, while the second uncertainty results from the systematic

uncertainties. The quadratic extrapolation suggests that the H-dibaryon is bound at the

physical value of the pion mass. However, the H-dibaryon is unbound at the 2σ level, and

a near threshold scattering state remains allowed by the current lattice QCD calculations.

Further, at the 2σ level, the extrapolation is also consistent with the binding energy being

independent of mπ.

Using the form BH(mπ) = B̃0 + c1 mπ to chirally extrapolate the lattice QCD calculations

produces the results shown in Fig. 1 (right panel). The H-dibaryon binding energy at the

physical value of the pion mass is found to be

Blinear
H

= −0.2± 3.3± 7.3 MeV , (2)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (right

panel). With the precision of the current lattice QCD results, the linear chiral extrapolation
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produces the results shown in Fig. 1 (right panel). The H-dibaryon binding energy at the

physical value of the pion mass is found to be

Blinear
H

= −0.2± 3.3± 7.3 MeV , (2)

as indicated by the intercept of the shaded region with the (green) dashed line in Fig. 1 (right

panel). With the precision of the current lattice QCD results, the linear chiral extrapolation
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Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD

Takashi Inoue1 Noriyoshi Ishii2, Sinya Aoki2,3, Takumi Doi3, Tetsuo Hatsuda4,5,
Yoichi Ikeda6, Keiko Murano7, Hidekatsu Nemura8, Kenji Sasaki3
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The flavor-singlet H-dibaryon, which has strangeness −2 and baryon number 2, is studied by the
approach recently developed for the baryon-baryon interactions in lattice QCD. The flavor-singlet
central potential is derived from the spatial and imaginary-time dependence of the Nambu-Bethe-
Salpeter wave function measured in Nf = 3 full QCD simulations with the lattice size of L " 2, 3, 4
fm. The potential is found to be insensitive to the volume, and it leads to a bound H-dibaryon with
the binding energy of 30–40 MeV for the pseudo-scalar meson mass of 673–1015 MeV.

PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.-t 12.38.Gc

Search for dibaryons is one of the most challenging
theoretical and experimental problems in the physics
of strong interaction and quantum chromodynamics
(QCD). In the non-strange sector, only one dibaryon, the
deuteron, is known experimentally. In the strange sector,
on the other hand, it is still unclear whether there are
bound dibaryons or dibaryon resonances. Among others,
the flavor-singlet state (uuddss), the H-dibaryon, has
been suggested to be the most promising candidate [1].
The H may also be a doorway to strange matter and to
exotic hyper-nuclei [2]. Although deeply bound H with
the binding energy BH > 7 MeV has been ruled out by
the discovery of the double Λ nuclei, 6

ΛΛHe [3], there still
remains a possibility of a shallow bound state or a reso-
nance in this channel [4].

While several lattice calculations on H have been re-
ported as reviewed in [5] (see also recent works [6–8]),
there is a serious problem in studying dibaryons on the
lattice: To accommodate two baryons inside the lattice
volume, the spatial lattice size L should be large enough.
Once L becomes large, however, energy levels of two
baryons become dense, so that quite a large imaginary-
time t is required to make clear isolation of the ground
state from the excited states. All the previous works on
dibaryons more or less face this issue (see also [9]).

The purpose of this Letter is to shed a new light on
the H-dibaryon by extending the lattice approach re-
cently proposed by the present authors [7, 10]. Our start-

ing point is the baryon-baryon potential obtained from
the Nambu-Bethe-Salpeter (NBS) amplitude measured
on the lattice [10]. Such a potential together with the
NBS amplitude can be shown to satisfy the Schrödinger
type equation and to reproduce the correct phase shifts
at low energies. It was found on the lattice in the flavor
SU(3) limit [7] that, while the celebrated repulsive core of
the potential appears in the nucleon-nucleon(NN) chan-
nels, the “attractive core” emerges in the H-dibaryon
channel. These features at the short range part of the
potential are essentially dictated by the Pauli exclusion
principle in the quark level: Six-quarks residing at the
same spatial point is partially forbidden by the quark
Pauli effect in the NN channels, which belong to the fla-
vor 27-plet or 10∗-plet, while the flavor-singlet six-quarks
do not suffer from the Pauli effect [11] (see also [12]).

The approach based on the baryon-baryon potential
has several advantages. In particular it can be used not
only to reduce the finite volume artifact but also to avoid
the problem of contaminations from excited states, as will
be explained later. In this Letter, to capture essential fea-
tures of the H-dibaryon without being disturbed by the
quark mass differences, we consider the flavor SU(3) limit
where all u, d, and s quarks have a common finite mass.
This allows us to extract baryon-baryon potentials for ir-
reducible flavor multiplets and to make the comparison
among different flavor channels in a transparent manner.
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Abstract
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With

only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately

the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point

are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed

by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion

mass allows for a bound H-dibaryon or a near-threshold scattering state. Further Lattice QCD

calculations are required to refine this situation.

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
�20

�10

0

10

20

30

40

50

mΠ2 �GeV2�

B H
�MeV

�

HALQCD : nf�3
NPLQCD : nf�2�1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
�20

�10

0

10

20

30

40

50

mΠ2 �GeV�

B H
�MeV

�

HALQCD : nf�3
NPLQCD : nf�2�1

FIG. 1: The results of Lattice QCD from the NPLQCD collaboration [8] (nf = 2 + 1) (red points)

and the HALQCD collaboration [9] (nf = 3) (blue points). Left panel: The darker (lighter) shaded

region corresponds to an extrapolation of the LQCD calculations that is quadratic in the pion mass,

of the form B(mπ) = B0 + d1 m2
π where the parameters are determined by the central values and

statistical uncertainties (statistical and systematic uncertainties combined in quadrature). The

vertical dashed (green) line corresponds to the physical pion mass. Right panel: Same as the left

panel but with the extrapolation B(mπ) = B0 + c1 mπ.

B(mπ) = B0 + d1 m2
π results in the shaded region shown in fig. 1 (left panel)

5
. The H-

dibaryon binding energy at the physical value of the pion mass, neglecting isospin-violation

and electromagnetic interactions, is found to be

Bquadratic
H

= +11.5± 2.8± 6.0 MeV , (1)

as indicated by the intercept of the shaded region with the (green) dashed line in fig. 1 (left

panel). The first uncertainty results from an extrapolation using the statistical uncertain-

ties of both Lattice QCD calculations, while the second error results from the systematic

uncertainties
6
. The quadratic extrapolation suggests that the H-dibaryon is bound at the

physical value of the pion mass. However, the H-dibaryon is unbound at the 2σ level, and

a near threshold scattering state remains allowed by the current Lattice QCD calculations.

Further, at the 2σ level, the extrapolation is also consistent with the binding energy being

independent of mπ.

Using the form B(mπ) = B0 + c1 mπ to chirally extrapolate the results of the NPLQCD

and HALQCD Lattice QCD calculations of the H-dibaryon binding energy produces the

results shown in fig. 1 (right panel). The H-dibaryon binding energy at the physical value

of the pion mass is found to be

Blinear
H

= +4.9± 4.0± 8.3 MeV , (2)

5
As the (fractional) uncertainties in the pion mass are much smaller than those of the H-dibaryon binding

energy, they make a negligible contribution to the uncertainty in the extrapolation region and in the

extrapolated binding energy in both the quadratic and linear extrapolations.

6
To be more precise, the second uncertainty results from extrapolating the statistical and systematic

uncertainties of the Lattice QCD calculations combined in quadrature, and then removing the contribution

from the statistical - also in quadrature.

4

The possibility of a bound H-dibaryon [1–6], whose existence was postulated by Jaffe [7]
in 1977, has been explored with Lattice QCD during the last few decades. Recently, the
NPLQCD and HALQCD collaborations have recently reported results that show that the
H-dibaryon is bound for a range of light-quark masses that are larger than those found
in nature [8, 9]. These calculations are important for a number of reasons. First, they
show that Lattice QCD is now capable of calculating the energy of simple nuclei, with the
H-dibaryon being an exotic example of such. Second, they provide evidence that a bound H-
dibaryon may exist for some values of parameters entering the QCD Lagrangian. However,
it is important to determine if this system is, in fact, bound at the physical values of the
light-quark masses and with the inclusion of the electroweak interactions. Experimental
evidence currently suggests that such a bound state does not exist [10], but that a near-
threshold resonance may exist in the scattering-channel with the quantum numbers of the
H-dibaryon [11]. In this note we establish the current constraints on the binding of the
H-dibaryon at the physical values of the light-quark masses, in the isospin limit and in the
absence of electroweak interactions, by extrapolating the available Lattice QCD results.

The details of the two Lattice QCD calculations that provide statistically significant
evidence for a bound H-dibaryon can be found in the very recent works of NPLQCD [8]
and HALQCD [9]. The NPLQCD result is determined from calculations in four lattice
volumes (with spatial extents of L ∼ 2.0, 2.5, 3.0 and 4.0 fm), each at a single spatial
lattice-spacing of b ∼ 0.123 fm and a pion mass of mπ ∼ 390 MeV. A binding energy of
BH = 16.6± 2.1± 4.6 MeV was determined at that pion mass. The HALQCD collaboration
performed calculations in three lattice volumes (with spatial extents of L ∼ 2.0, 3.0 and
4.0 fm) at a lattice spacing of b ∼ 0.121 fm and in the limit of SU(3) flavor symmetry at three
different quark masses giving mπ ∼ 673, 837 and 1015 MeV. In order to extrapolate in the
quark masses, the binding energy of BH = 37.4± 4.4± 7.3 MeV obtained at mπ ∼ 837 MeV
is used because this pion mass corresponds to a strange-quark mass that is closest to that of
nature (and that of the NPLQCD calculations) 1. One should keep in mind all of the usual,
well-documented, caveats associated with chiral extrapolations involving heavy pions.

NPLQCD 2 and HALQCD employed different clover discretizations for the light-quarks
(and different gauge-actions), providing results that are O(b)-improved and therefore both
sets of calculations have lattice-spacing errors that scale as O(b2). A complete treatment of
these effects, and a continuum extrapolation, requires Lattice QCD calculations at more than
one lattice spacing. Given the precision with which the single-hadron energy-momentum
relation is satisfied [8], the contributions from Lorentz-symmetry breaking operators that
appear at this order are expected to be highly suppressed. Naive scaling arguments, as well
as the cancellations that occur in forming energy differences, suggest that lattice spacing
artifacts are suppressed, as compared, for instance, to the leading quark-mass effects. How-
ever, definitive statements about the lattice spacing dependence will require calculations at
a smaller lattice spacing. In this brief report, we assume that lattice spacing artifacts are

1
The energy-level(s) determined in the Lattice QCD calculation of HALQCD [9] is exponentially close to the

actual bound-state energy of the H-dibaryon and does not suffer from the uncontrolled approximations that

are present in phase-shifts calculated via the energy-dependent and sink-dependent potentials presented

by HALQCD. It is only the energy eigenvalue that is used in our present analysis.

2
NPLQCD used anisotropic gauge field configurations that were generated by the Hadron Spectrum Col-

laboration [12, 13]. The temporal and spatial lattice spacings, bt and bs respectively, are related by

bt = bs/ξt where ξt = 3.5.

2

error

Evidence for binding
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FIG. 17: The Ξ−Ξ− binding energy as a function of the pion mass. The black line denotes
the predictions of the NSC97a-NSC97f models [2] constrained from nucleon-nucleon and hyperon-
nucleon scattering data. The orange line denotes the range of predictions by Miller [3], and the
green line denotes the leading order EFT prediction by Haidenbauer and Meißner (HM) [4]. The red
point and uncertainty (the inner is statistical and the outer is statistical and systematic combined
in quadrature) is our present nf = 2 + 1 result. The OBE model and EFT predictions at the
physical pion mass are displaced horizontally for the purpose of display.

channel with LO EFT [73] in the absence of Coulomb interactions and isospin breaking

(these results exhibit non-negligible dependence on the momentum cut-off). On the other

hand, the constituent quark model of Ref. [68] finds strong similarities between the behavior

of the Σ−Σ− and nn interactions, leading to similar values for the phase shifts. Our LQCD

calculations in this channel are inconclusive. While the ground state in the 243 × 128 en-

semble is negatively shifted, the ground state in the 323 × 256 ensemble is consistent with

zero, and thus is consistent with both a scattering state and a bound state.

V. CONCLUSIONS

We have performed precise Lattice QCD calculations of baryon-baryon systems at a pion

mass of mπ ∼ 390 MeV in four ensembles of anisotropic Clover gauge-field configurations

with a spatial lattice spacing of bs ∼ 0.123 fm, an anisotropy of ξ ∼ 3.5 and cubic spatial

lattice volumes with extent L ∼ 2.0, 2.5, 3.0 and 4.0 fm. These calculations have provided

evidence, with varying levels of significance, for the existence of two-baryon bound states

from QCD, which are summarized in Table III. Our LQCD calculations were performed

TABLE III: A summary of the two-body binding energies determined in this work.

Deuteron Di-neutron H-dibaryon Ξ−Ξ−

Binding Energy (MeV) 11(05)(12) 7.1(5.2)(7.3) 13.2(1.8)(4.0) 14.0(1.4)(6.7)

21

Soon will be competitive with EFT and models!

ΞΞ bound!!



Conclusion
• A Golden Age for nuclear physics is imminent! But need to 

run big machines a long time to do nuclear physics!

• Few-hadron systems are currently under intense 
investigation. Calculation of deuteron properties is a major 
outstanding benchmark. The H-dibaryon and          systems 
are bound at unphysical quark masses. Results on hyperon-
nucleon scattering are forthcoming.

• Naive chiral extrapolation of the existing lattice data indicate 
that at 2-sigma level H can be unbound or independent of 
the quark masses: need                                        AND 
smaller lattice spacing to claim control of continuum limit!

mπ ∼ 200− 250 MeV

ΞΞ



UNH-11-1

ICCUB-11-125

JLAB-THY-11-

NT@UW-11-02

IUHET-558

UCB-NPAT-11-003

NT-LBNL-11-005

Present Constraints on the H-dibaryon at the Physical Point

from Lattice QCD

S.R. Beane,1, 2 E. Chang,3 W. Detmold,4, 5 B. Joo,5 H.W. Lin,6 T.C. Luu,7

K. Orginos,4, 5 A. Parreño,3 M.J. Savage,6 A. Torok,8 and A. Walker-Loud9

(NPLQCD Collaboration)
1
Albert Einstein Zentrum für Fundamentale Physik,

Institut für theoretische Physik, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2
Department of Physics, University of New Hampshire, Durham, NH 03824-3568, USA

3
Dept. d’Estructura i Constituents de la Matèria. Institut de Ciències del Cosmos (ICC),
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Abstract
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With

only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately

the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point

are not determined. In this brief report, we consider the constraints on the H-dibaryon imposed

by two simple chiral extrapolations. In both instances, the extrapolation to the physical pion

mass allows for a bound H-dibaryon or a near-threshold scattering state. Further Lattice QCD

calculations are required to refine this situation.
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FIG. 1: Strangeness content in the baryon octet from sets MILC 2064f21b679m010m030 &

MILC 2064f21b676m010m050
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FIG. 3: The left panel shows the mass of the Λ as a function of e−mπL where L is the spatial extent
of the lattice. From left-to-right, the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point corresponds to the mass of the Λ extrapolated to L = ∞, and the red
line corresponds to the best fit of the form MΛ(L) = MΛ(∞) + C(V )

Λ e−mπL with the statistical
and systematic uncertainties combined in quadrature. The right panel shows the 68% confidence
interval associated with the parameters MΛ(∞) and C(V )

Λ .

It is clear that the calculated baryon masses on the 163 × 128 ensemble, with an
mπ L = 3.86, are significantly shifted from the infinite-volume value and, more impor-
tantly, are shifted by an amount that is comparable to the power-law energy-splittings in
the two-baryon sector. Therefore, we do not use the calculations performed on the 163×128
ensemble in the analysis of two-baryon interactions. While the energy-shifts calculated on
the 203 × 128 ensemble, with an mπ L = 4.82, are significantly less than those on the
163 × 128 ensemble, they remain large enough that these are also not used in the analysis
of two-baryon interactions. Therefore, only calculations on the 243× 128 ensemble, with an
mπ L = 5.79, and on the 323 × 128 ensemble, with an mπ L = 7.71, are used in the
analysis of the two-baryon sector, and in particular, in the calculation of two-baryon binding
energies. From this analysis we conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential volume effects to be negligible small,
appears to be true. We believe it to be the case that reliable calculations of baryon-baryon
scattering parameters and bound-states from two-baryon energy-eigenvalues requires that
mπL>∼ 2π. In the case of the interactions between π’s and K’s, such large volumes are not
required as the range of the interaction is set by 2mπ and not π due to the absence of a
three-meson interaction vertex, and therefore a calculations of the meson-meson scattering
amplitude on the 163 × 128 and 203 × 128 ensembles can be relied upon.

C. Verifying the Energy-Momentum Relation

Implicit in the calculation of hadron-hadron scattering amplitudes with Lüschers method
is that the single hadron energy-momentum relation is satisfied over the range of momenta
(that may be) projected against in forming the correlation functions that are analyzed, and
over the range of energy eigenvalues that are subsequently extracted. In order to verify that
the energy-momentum relation is well-satisfied for the baryons, single hadron correlation
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required as the range of the interaction is set by 2mπ and not π due to the absence of a
three-meson interaction vertex, and therefore a calculations of the meson-meson scattering
amplitude on the 163 × 128 and 203 × 128 ensembles can be relied upon.

C. Verifying the Energy-Momentum Relation

Implicit in the calculation of hadron-hadron scattering amplitudes with Lüschers method
is that the single hadron energy-momentum relation is satisfied over the range of momenta
(that may be) projected against in forming the correlation functions that are analyzed, and
over the range of energy eigenvalues that are subsequently extracted. In order to verify that
the energy-momentum relation is well-satisfied for the baryons, single hadron correlation
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of mπ ∼ 389
MeV, a spatial lattice spacing of bs ∼ 0.1227(8) fm,
an anisotropy factor of ξt = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ∼
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, δ. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, ∆E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

∆E(AB)
n = 2

�
q2n/ξ

2
t +m2 − 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot δ(qn) =
1

π L
S

�
q2n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

κ = γ +
1

L
c1

�
e−γL +

√
2 e−

√
2γL

�
+ ... , (3)

where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two different lattice volumes
that both have q20 < 0 and q0 cot δ(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = iκ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]
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where γ is the infinite-volume value of the binding mo-
mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is sufficiently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The Λ mass, unlike that of the π and
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.
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calculated energy eigenvalues. In order to verify that the
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the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
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mentum, under the assumption that γ � mπ, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give γ, from which
the binding energy of the state is B = γ2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that mπL � 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e−mπL. In principle,
in marginal volumes, one can use the low-energy effec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
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that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the Λ. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the Λmass on the 163×128 ensemble (mπL = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 × 128 en-
semble is much less than that of the 163 × 128 ensemble,
but we choose not use calculations performed on either
the 163×128 or 203×128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 × 128 ensemble (mπL = 5.79) and on the 323 × 128
ensemble (mπL = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume effects, and
in particular, that mπL>∼ 2π ∼ 6.3 for exponential vol-
ume effects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the
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of the two-hadron system in the lattice volume from the

sum of the single-hadron masses is related to the scat-

tering phase shift, δ. The form of the baryon interpo-

lating operators, the baryon and baryon-baryon correla-

tors, and the methodology used for extracting the en-

ergy shift are discussed in detail in Ref. [24]. For gauge-

field configurations that have different lattice spacings

in the temporal and spatial directions (anisotropic lat-

tices), the energy shift, ∆E(AB)
n (in temporal lattice units

(t.l.u)), of two particles of equal mass, m, is given by

∆E(AB)
n = 2

�
q2
n/ξ2

t + m2 − 2m, where ξt is the lattice

anisotropy. The subscript n denotes the nth energy-level

in the lattice volume. This relation determines a squared

momentum, q2
n (in spatial lattice units (s.l.u)), which can

be either positive or negative. For s-wave scattering be-

low inelastic thresholds, q2
n is related to the real part of

the inverse scattering amplitude through the eigenvalue

equation

qn cot δ(qn) =
1

π L
S

�
q2
n

�
L

2π

�2
�

, (1)

where the S-function is given by

S(x) = lim
Λ→∞

|j|<Λ�

j

1

|j|2 − x
− 4π Λ , (2)

thereby implicitly determining the value of the phase

shift at the energy ∆E(AB)
n .

Determining energy-levels with the same quantum

numbers in multiple volumes allows for bound states to

be distinguished from scattering states. Writing q0 = iκ
for states that are negatively shifted in energy in the lat-

tice volume, the volume dependence of the binding mo-

mentum in the large volume limit follows directly from

eq. (1) and is of the form [23]

κ = γ +
g1

L

�
e−γL

+
√

2 e−
√

2γL
�

+ ... , (3)

where γ is the infinite-volume value of the binding mo-

mentum, under the assumption that γ � mπ, and g1

is treated as a fit parameter. With calculations in two

or more lattice volumes that both have q2
0 < 0 and

q0 cot δ(q0) < 0 it is possible to perform an extrapola-

tion with eq. (3) to the infinite-volume limit to deter-

mine the binding energy of the bound state, B = γ2/m.

The range of nuclear interactions is set by the pion mass,

and therefore the use of Lüscher’s method requires that

mπL� 1 in order to strongly suppress the contributions

that depend upon the volume as e−mπL [25].

Our present results are from calculations on four en-

sembles of nf = 2 + 1 anisotropic clover gauge-field con-

figurations at a pion mass of mπ ∼ 389 MeV, a spatial

lattice spacing of bs ∼ 0.1227(8) fm, an anisotropy fac-

tor [26, 27] of ξt = bs/bt = 3.500(32), and with spatial-

extents of 16, 20, 24, 32 lattice sites, corresponding to spa-

tial dimensions of L ∼ 2.0, 2.5, 3.0 and 3.9 fm respec-

tively, and temporal extents of 128, 128, 128, and 256

lattice sites, respectively. The precision of the calcula-

tions is sufficiently high that the exponential volume de-

pendence of the single baryon masses can be quantified.

The results of this analysis dictate a minimum lattice

volume for which the exponential contributions to the

baryon masses do not significantly contaminate the ex-

traction of scattering parameters. The Λ mass, unlike
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FIG. 1: Left panel: the mass of the Λ as a function of e−mπL

where L is the spatial extent of the lattice. The left-most
(red) point and uncertainty is the infinite-volume extrapola-
tion of the other (blue) points calculated in lattice volumes
with spatial extents of, from left-to-right, L = 32, 24, 20, and
16. Right panel: the energy-momentum relation of the Λ
calculated on the 323×256 ensemble. The points (and uncer-
tainties) are the results of lattice calculations and the (red)
curve corresponds to the best quadratic fit. The units of the
vertical axes in both plots are are t.l.u., and of the horizontal
axis of the right plot are (t.l.u.)2

that of the π and kaon, is found to have statistically sig-

nificant volume-dependence, as shown in the left panel

of fig. 1. It is clear that the Λ mass on the 163 × 128

ensemble (mπL = 3.86) is significantly higher than its

infinite-volume value and, more importantly, is shifted

by an amount that is comparable to the two-baryon en-

ergy shifts. The deviation found in calculations on the

203 × 128 ensemble (mπL = 4.82) is much less than

that of the 163×128 ensemble, but we choose to use only

calculations on the 243 × 128 ensemble (mπL = 5.79)

and on the 323 × 256 ensemble (mπL = 7.71) in the

bound-state analysis.

Lüscher’s method assumes that the single-hadron

energy-momentum relation is satisfied over the range of

energies used in the eigenvalue equation in eq. (1). In or-

der to verify that the energy-momentum relation is sat-

isfied, single hadron correlation functions were formed

with well-defined lattice spatial momentum k =
2π
L n for

|n|2 ≤ 5. As the low-lying states in the lattice volume

have energies that are small compared with the Λ mass,

it is sufficient to determine the non-relativistic energy-

momentum relation,

EΛ = M0 +
|k|2

2M1
− |k|4

8M3
2

+ ... . (4)

The Λ energy as a function of momentum calculated

on the 323 × 256 ensemble is shown in the right panel

M0 = 0.22135(10)(05)

M1 = 0.2231(34)(13)

M2 = 0.261(26)(04)

Energy-Momentum Relation

Special relativity satisfied!


